Generalizations of an identity of de Montmort

Michael J. Schlosser
Faculty of Mathematics
universität wien

joint work with

Tom H. Koornwinder
Korteweg-de Vries Institute for Mathematics
Universiteit van Amsterdam
See

Outline

1. De Montmort’s identity
2. Chaundy & Bullard’s proof
3. Daubechies’ proof
4. A proof by generating functions
5. Weighted lattice path enumeration
6. A proof using the beta integral
7. q-Extensions
De Montmort’s identity

In the 1713 second edition of his book *Essay d'analyse sur les jeux de hazard* Pierre Rémond de Montmort implicitly gave the identity

\[
1 = (1 - x)^n + \sum_{k=0}^{n} \binom{n+k}{k} x^k + x^{m+1} \sum_{k=0}^{m} \binom{m+k}{k} (1 - x)^k,
\]

where \(m, n \in \mathbb{N}_0 \).

Hereby he gave a new solution of the problem of points for two players (of unequal chances).

A solution of this problem for two players of equal chances (corresponding to \(x = \frac{1}{2} \)) was already given by Fermat and Pascal in 1654. In the case of two players of unequal chances a first solution (different from the one above) was given by Johann Bernoulli in 1710, in a letter to de Montmort.

Generalizations of an identity of de Montmort
De Montmort’s identity

In the 1713 second edition of his book *Essay d’analyse sur les jeux de hazard*, Pierre Rémond de Montmort implicitly gave the identity

\[
1 = (1 - x)^{n+1} \sum_{k=0}^{m} \binom{n + k}{k} x^k + x^{m+1} \sum_{k=0}^{n} \binom{m + k}{k} (1 - x)^k, \quad (dM)
\]

where \(m, n \in \mathbb{N}_0 \).
In the 1713 second edition of his book *Essay d’analyse sur les jeux de hazard*, Pierre Rémond de Montmort implicitly gave the identity

\[
1 = (1 - x)^{n+1} \sum_{k=0}^{m} \binom{n+k}{k} x^k + x^{m+1} \sum_{k=0}^{n} \binom{m+k}{k} (1-x)^k, \quad (dM)
\]

where \(m, n \in \mathbb{N}_0 \). Hereby he gave a new solution of the problem of points for two players (of unequal chances).
De Montmort’s identity

In the 1713 second edition of his book *Essay d’analyse sur les jeux de hazard*, Pierre Rémond de Montmort implicitly gave the identity

\[1 = (1 - x)^{n+1} \sum_{k=0}^{m} \binom{n + k}{k} x^k + x^{m+1} \sum_{k=0}^{n} \binom{m + k}{k} (1 - x)^k, \quad (dM) \]

where \(m, n \in \mathbb{N}_0 \). Hereby he gave a new solution of the problem of points for two players (of unequal chances).

A solution of this problem for two players of equal chances (corresponding to \(x = \frac{1}{2} \)) was already given by Fermat and Pascal in 1654.
De Montmort’s identity

In the 1713 second edition of his book *Essay d’analyse sur les jeux de hazard*, Pierre Rémond de Montmort implicitly gave the identity

\[1 = (1 - x)^{n+1} \sum_{k=0}^{m} \binom{n+k}{k} x^k + x^{m+1} \sum_{k=0}^{n} \binom{m+k}{k} (1 - x)^k, \quad (dM) \]

where \(m, n \in \mathbb{N}_0 \). Hereby he gave a new solution of the problem of points for two players (of unequal chances).

A solution of this problem for two players of equal chances (corresponding to \(x = \frac{1}{2} \)) was already given by Fermat and Pascal in 1654.

In the case of two players of unequal chances a first solution (different from the one above) was given by Johann Bernoulli in 1710, in a letter to de Montmort.
A probabilistic proof of de Montmort’s identity

Two players, Pierre and Paul play a game of chance. They shall have chances x and $1-x$, respectively, of winning each round. Suppose the game is interrupted as soon as Pierre has won $m+1$ rounds or Paul has won $n+1$ rounds. Pierre is the winner, if he wins the last round, while before that he has already won m rounds and Paul has won no more than n rounds.

The chance for Pierre to win is $x^n \sum_{k=0}^{m+1} \binom{m+k}{k} x^m (1-x)^k$. Similarly, the chance for Paul to win is $(1-x)^m \sum_{k=0}^{n+1} \binom{n+k}{k} (1-x)^n x^k$.

These two chances necessarily add up to 1, thus (dM) follows.

Generalizations of an identity of de Montmort
A probabilistic proof of de Montmort's identity

Two players, Pierre and Paul play a game of chance. They shall have chances x and $1-x$, respectively, of winning each round.
A probabilistic proof of de Montmort’s identity

Two players, Pierre and Paul play a game of chance.
They shall have chances x and $1 - x$, respectively, of winning each round.
Suppose the game is interrupted as soon as Pierre has won $m + 1$ rounds or Paul has won $n + 1$ rounds.

Pierre is the winner, if he wins the last round, while before that he has already won m rounds and Paul has won no more than n rounds.

The chance for Pierre to win is

$$x^n \sum_{k=0}^{m} \binom{m + k}{k} x^m (1 - x)^k.$$

Similarly, the chance for Paul to win is

$$(1 - x)^m \sum_{k=0}^{n} \binom{n + k}{k} (1 - x)^n x^k.$$

These two chances necessarily add up to 1, thus (dM) follows.
Two players, Pierre and Paul play a game of chance. They shall have chances x and $1-x$, respectively, of winning each round. Suppose the game is interrupted as soon as Pierre has won $m+1$ rounds or Paul has won $n+1$ rounds.

Pierre is the winner, if he wins the last round, while before that he has already won m rounds and Paul has won no more than n rounds.
A probabilistic proof of de Montmort’s identity

Two players, Pierre and Paul play a game of chance. They shall have chances \(x \) and \(1 - x \), respectively, of winning each round. Suppose the game is interrupted as soon as Pierre has won \(m + 1 \) rounds or Paul has won \(n + 1 \) rounds. Pierre is the winner, if he wins the last round, while before that he has already won \(m \) rounds and Paul has won no more than \(n \) rounds.

The chance for Pierre to win is

\[
x \sum_{k=0}^{n} \binom{m+k}{k} x^m (1-x)^k.
\]
Two players, Pierre and Paul play a game of chance. They shall have chances x and $1 - x$, respectively, of winning each round. Suppose the game is interrupted as soon as Pierre has won $m + 1$ rounds or Paul has won $n + 1$ rounds.

Pierre is the winner, if he wins the last round, while before that he has already won m rounds and Paul has won no more than n rounds.

The chance for Pierre to win is

$$x \sum_{k=0}^{n} \binom{m+k}{k} x^m (1-x)^k.$$

Similarly, the chance for Paul to win is

$$(1-x) \sum_{k=0}^{m} \binom{n+k}{k} (1-x)^n x^k.$$
A probabilistic proof of de Montmort’s identity

Two players, Pierre and Paul play a game of chance. They shall have chances x and $1 - x$, respectively, of winning each round. Suppose the game is interrupted as soon as Pierre has won $m + 1$ rounds or Paul has won $n + 1$ rounds.

Pierre is the winner, if he wins the last round, while before that he has already won m rounds and Paul has won no more than n rounds.

The chance for Pierre to win is

$$x \sum_{k=0}^{n} \binom{m + k}{k} x^{m} (1 - x)^{k}.$$

Similarly, the chance for Paul to win is

$$(1 - x) \sum_{k=0}^{m} \binom{n + k}{k} (1 - x)^{n} x^{k}.$$

These two chances necessarily add up to 1, thus (dM) follows.
De Montmort’s identity can be written more succinctly as

\[p_{m,n}(x) + p_{n,m}(1 - x) = 1, \]
De Montmort’s identity can be written more succinctly as

\[p_{m,n}(x) + p_{n,m}(1-x) = 1, \]

where

\[p_{m,n}(x) := (1-x)^{n+1} \sum_{k=0}^{m} \binom{n+k}{k} x^k = (1-x)^{n+1} \sum_{k=0}^{m} \frac{(n+1)_k}{k!} x^k \]

and

\[(a)_k := \begin{cases} a(a+1) \ldots (a+k-1) & \text{if } k = 1, 2, \ldots, \\ 1 & \text{if } k = 0, \end{cases} \]

is the Pochhammer symbol.
This formula was rediscovered (partially or completely) several times:
This formula was rediscovered (partially or completely) several times:

- In 1738 De Moivre gives this identity in the second edition of his book *The doctrine of chances*, in his study of the *figurative numbers*.
This formula was rediscovered (partially or completely) several times:

- In 1738 De Moivre gives this identity in the second edition of his book *The doctrine of chances*, in his study of the figurative numbers.

- In 1868 Hering (a high school teacher) derived the identity by manipulation of series and application of Pfaff’s $2F_1$ transformation.
This formula was rediscovered (partially or completely) several times:

- In 1738 De Moivre gives this identity in the second edition of his book *The doctrine of chances*, in his study of the figurative numbers.

- In 1868 Hering (a high school teacher) derived the identity by manipulation of series and application of Pfaff’s $_2F_1$ transformation.

- In 1960 Chaundy and Bullard rediscovered the identity in their solution of John Smith’s problem.
This formula was rediscovered (partially or completely) several times:

- In 1738 **De Moivre** gives this identity in the second edition of his book *The doctrine of chances*, in his study of the **figurative numbers**.

- In 1868 **Hering** (a high school teacher) derived the identity by **manipulation of series** and application of Pfaff’s $\,_{2}F_{1}$ transformation.

- In 1960 **Chaundy and Bullard** rediscovered the identity in their solution of **John Smith’s problem**.

- In 1971 **Herrmann** interpreted $p_{m,n}(x)$ as the polynomial of degree $m + n + 1$ which has a zero of order $n + 1$ at $x = 1$ and such that $1 - p_{m,n}(x)$ has a zero of order $m + 1$ at $x = 0$. He proved this by induction with respect to $m + n$.
This formula was rediscovered (partially or completely) several times:

- In 1738 De Moivre gives this identity in the second edition of his book *The doctrine of chances*, in his study of the *figurative numbers*.

- In 1868 Hering (a high school teacher) derived the identity by manipulation of series and application of Pfaff’s $2F_1$ transformation.

- In 1960 Chaundy and Bullard rediscovered the identity in their solution of *John Smith’s problem*.

- In 1971 Herrmann interpreted $p_{m,n}(x)$ as the polynomial of degree $m + n + 1$ which has a zero of order $n + 1$ at $x = 1$ and such that $1 - p_{m,n}(x)$ has a zero of order $m + 1$ at $x = 0$. He proved this by induction with respect to $m + n$.

- In 1975 the (dM) identity was proposed for the *Canadian Mathematical Olympiad* (but not used there). Later, it appeared in the problem sections of *Crux Mathematicorum*, the *American Mathematical Monthly*, and *SIAM Review*. Different proofs by various people were given (induction; probabilistic; partial fractions).
In 1979 Jager observed that multiplication of both sides of (dM) by $x^{-m-1}(1-x)^{-n-1}$ yields the partial fraction decomposition

$$\frac{1}{x^{m+1}(1-x)^{n+1}} = \frac{r_{m,n}(x)}{x^{m+1}} + \frac{s_{m,n}(x)}{(1-x)^{n+1}},$$

with explicit $r_{m,n}(x)$ and $s_{m,n}(x)$ of respective degrees m and n.
In 1979 Jager observed that multiplication of both sides of \((dM)\) by \(x^{-m-1}(1-x)^{-n-1}\) yields the partial fraction decomposition

\[
\frac{1}{x^{m+1}(1-x)^{n+1}} = \frac{r_{m,n}(x)}{x^{m+1}} + \frac{s_{m,n}(x)}{(1-x)^{n+1}},
\]

with explicit \(r_{m,n}(x)\) and \(s_{m,n}(x)\) of respective degrees \(m\) and \(n\).

In 1986 Damjanovic, Klamkin & Ruehr observed an \(n\)-variable generalization of the identity:

\[
\sum_{i=1}^{n} x_i \sum_{k_1=0}^{a_1} \cdots \sum_{k_n=0}^{a_n} \delta_{k_i, a_i} \frac{(k_1 + \cdots + k_n)!}{k_1! \cdots k_n!} x_1^{k_1} \cdots x_n^{k_n} = 1,
\]

where \(\sum_{i=1}^{n} x_i = 1\).
They gave a proof by generating functions and indicated a probabilistic proof.
In 1988 Daubechies rediscovered the $m = n$ case of (dM). This identity was a crucial step for her in order to arrive at the form of the function $m_0(\xi)$ which is associated with the wavelets of compact support named after her. Her proof utilizes Bézout’s identity.
In 1988 Daubechies rediscovered the $m = n$ case of (dM). This identity was a crucial step for her in order to arrive at the form of the function $m_0(\xi)$ which is associated with the wavelets of compact support named after her. Her proof utilizes Bézout’s identity.

Multiplication of both sides of (dM) by $(1 - x)^{-n-1}$ gives

$$(1 - x)^{-n-1} = \sum_{k=0}^{m} \frac{(n + 1)k}{k!} x^k + x^{m+1} \sum_{k=0}^{n} \frac{(m + 1)k}{k!} (1 - x)^{k-n-1}.$$

This identity is a special case of a three-term identity for three Gauß hypergeometric functions satisfying the same hypergeometric differential equation in a very degenerate case.
Chaundy & Bullard’s proof

Fix m and n. By the binomial theorem we have

$$(x + y)^{m+n+1} = P_{m,n}(x,y) + x^{m+1}P_{n,m}(y,x),$$

where $P_{m,n}(x,y) := \sum_{k=0}^{m+n+1} \binom{m+n+1}{k} x^k y^{m+n+1-k}$ is a homogeneous polynomial of degree m.

Put $y = 1 - x$. Then

$$1 = (1 - x)^{n+1}P_{m,n}(x,1-x) + x^{m+1}P_{n,m}(1-x,x).$$

This identity was already obtained by Johann Bernoulli in 1710 in his solution of the problem of points.

Generalizations of an identity of de Montmort
Fix m and n. By the binomial theorem we have
\[(x + y)^{m+n+1} = y^{n+1} P_{m,n}(x, y) + x^{m+1} P_{n,m}(y, x),\]
where
\[P_{m,n}(x, y) := \sum_{k=0}^{m} \binom{m+n+1}{k} x^k y^{m-k}\]
is a homogeneous polynomial of degree m.
Fix m and n. By the binomial theorem we have

$$(x + y)^{m+n+1} = y^{n+1}P_{m,n}(x, y) + x^{m+1}P_{n,m}(y, x),$$

where

$$P_{m,n}(x, y) := \sum_{k=0}^{m} \binom{m + n + 1}{k} x^k y^{m-k}$$

is a homogeneous polynomial of degree m.

Put $y = 1 - x$. Then

$$1 = (1 - x)^{n+1}P_{m,n}(x, 1-x) + x^{m+1}P_{n,m}(1-x, x).$$
Fix m and n. By the binomial theorem we have

$$(x + y)^{m+n+1} = y^{n+1} P_{m,n}(x, y) + x^{m+1} P_{n,m}(y, x),$$

where

$$P_{m,n}(x, y) := \sum_{k=0}^{m} \binom{m+n+1}{k} x^k y^{m-k}$$

is a homogeneous polynomial of degree m.

Put $y = 1 - x$. Then

$$1 = (1 - x)^{n+1} P_{m,n}(x, 1 - x) + x^{m+1} P_{n,m}(1 - x, x).$$

This identity was already obtained by Johann Bernoulli in 1710 in his solution of the problem of points.
Multiplication of the last identity by \((1 - x)^{-n-1}\) yields

\[
(1 - x)^{-n-1} = P_{m,n}(x, 1 - x) + x^{m+1}(1 - x)^{-n-1}P_{n,m}(1 - x, x).
\]
Multiplication of the last identity by \((1 - x)^{-n-1}\) yields

\[
(1 - x)^{-n-1} = P_{m,n}(x, 1 - x) + x^{m+1}(1 - x)^{-n-1}P_{n,m}(1 - x, x).
\]

Expand both sides as a power series in \(x\). Then \(P_{m,n}(x, 1 - x)\) is a polynomial of degree \(\leq m\) in \(x\) and all terms in the power series of \(x^{m+1}(1 - x)^{-n-1}P_{n,m}(1 - x, x)\) have degree \(\geq m + 1\). Hence \(P_{m,n}(x, 1 - x)\) equals the power series of \((1 - x)^{-n-1}\) truncated after the term of \(x^m\), i.e.,

\[
P_{m,n}(x, 1 - x) = \sum_{k=0}^{m} \frac{(n + 1)k}{k!} x^k.
\]
Multiplication of the last identity by \((1 - x)^{-n-1}\) yields

\[
(1 - x)^{-n-1} = P_{m,n}(x, 1 - x) + x^{m+1}(1 - x)^{-n-1}P_{n,m}(1 - x, x).
\]

Expand both sides as a power series in \(x\). Then \(P_{m,n}(x, 1 - x)\) is a polynomial of degree \(\leq m\) in \(x\) and all terms in the power series of \(x^{m+1}(1 - x)^{-n-1}P_{n,m}(1 - x, x)\) have degree \(\geq m + 1\). Hence \(P_{m,n}(x, 1 - x)\) equals the power series of \((1 - x)^{-n-1}\) truncated after the term of \(x^m\), i.e.,

\[
P_{m,n}(x, 1 - x) = \sum_{k=0}^{m} \frac{(n + 1)_k}{k!} x^k.
\]

Then substitution proves (dM), and its homogeneous form

\[
(x + y)^{m+n+1} = y^{n+1} \sum_{k=0}^{m} \frac{(n + 1)_k}{k!} x^k (x + y)^{m-k} + x^{m+1} \sum_{k=0}^{n} \frac{(m + 1)_k}{k!} y^k (x + y)^{n-k}.
\]
Note that, conversely, \((dM)\) implies the equality

\[
\sum_{k=0}^{m} \binom{m+n+1}{k} x^k (1-x)^{m-k} = \sum_{k=0}^{m} \binom{n+k}{k} x^k.
\]
Note that, conversely, \((dM)\) implies the equality

\[
\sum_{k=0}^{m} \binom{m+n+1}{k} x^k (1-x)^{m-k} = \sum_{k=0}^{m} \binom{n+k}{k} x^k.
\]

This is actually a special case of the Pfaff transformation formula

\[
{2}F{1}\left(\begin{array}{c}
a, b \\
\overline{c}
\end{array}; x \right) = (1-x)^{-a} _{2}F_{1}\left(\begin{array}{c}
a, c - b \\
\overline{c}
\end{array}; \frac{x}{x-1} \right)
\]

for Gauß hypergeometric series, defined by

\[
{2}F{1}\left(\begin{array}{c}
a, b \\
\overline{c}
\end{array}; z \right) := \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{(c)_k k!} z^k.
\]
The Bezout identity in $\mathbb{K}[x]$ states that if $p, q \in \mathbb{K}[x]$ with $\deg p, \deg q > 0$ and $\gcd(p(x), q(x)) = 1$, then there exist unique $r, s \in \mathbb{K}[x]$ with $\deg r = (\deg q) - 1$ and $\deg s = (\deg p) - 1$ such that $1 = p(x)r(x) + q(x)s(x)$.

Daubechies used this identity to start with (the $m = n$ case of) $1 = (1 - x)^{n+1}r_{m,n}(x) + x^{m+1}s_{m,n}(x)$, where $r_{m,n}(x)$ and $s_{m,n}(x)$ are polynomials of respective degree m and n, not yet necessarily explicitly given.

Her further analysis was the same as Chaundy and Bullard's, while she made use of the symmetry $r_{m,n}(x) = s_{n,m}(1-x)$.
The **Bezout identity** in $K[x]$ states that
if $p, q \in K[x]$ with $\deg p, \deg q > 0$ and $\gcd(p(x), q(x)) = 1$,
then there exist unique $r, s \in K[x]$
with $\deg r = (\deg q) - 1$ and $\deg s = (\deg p) - 1$ such that

$$1 = p(x)r(x) + q(x)s(x).$$
Daubechies’ proof

The **Bezout identity** in $K[x]$ states that
if $p, q \in K[x]$ with $\deg p, \deg q > 0$ and $\gcd(p(x), q(x)) = 1$, then there exist unique $r, s \in K[x]$ with $\deg r = (\deg q) - 1$ and $\deg s = (\deg p) - 1$ such that

$$1 = p(x)r(x) + q(x)s(x).$$

Daubechies used this identity to start with (the $m = n$ case of)

$$1 = (1 - x)^{n+1} r_{m,n}(x) + x^{m+1} s_{m,n}(x),$$

where $r_{m,n}(x)$ and $s_{m,n}(x)$ are polynomials of respective degree m and n, not yet necessarily explicitly given.
The **Bezout identity** in $K[x]$ states that if $p, q \in K[x]$ with $\deg p, \deg q > 0$ and $\gcd(p(x), q(x)) = 1$, then there exist unique $r, s \in K[x]$ with $\deg r = (\deg q) - 1$ and $\deg s = (\deg p) - 1$ such that

$$1 = p(x)r(x) + q(x)s(x).$$

Daubechies used this identity to start with (the $m = n$ case of)

$$1 = (1 - x)^{n+1}r_{m,n}(x) + x^{m+1}s_{m,n}(x),$$

where $r_{m,n}(x)$ and $s_{m,n}(x)$ are polynomials of respective degree m and n, not yet necessarily explicitly given.

Her further analysis was the same as Chaundy and Bullard’s, while she made use of the symmetry $r_{m,n}(x) = s_{n,m}(1 - x)$.

Generalizations of an identity of de Montmort
A proof by generating functions

(Damjanovic–Klamkin–Ruehr; Prodinger)
A proof by generating functions

(Damjanovic–Klamkin–Ruehr; Prodinger)

Let

\[f(u, v; x) := \sum_{m,n \geq 0} u^m v^n (1 - x)^{n+1} \sum_{k=0}^{m} \binom{n+k}{k} x^k. \]
A proof by generating functions

(Damjanovic–Klamkin–Ruehr; Prodinger)

Let

\[f(u, v; x) := \sum_{m, n \geq 0} u^m v^n (1 - x)^{n+1} \sum_{k=0}^m \binom{n + k}{k} x^k. \]

Then

\[f(v, u; 1 - x) = \sum_{m, n \geq 0} u^m v^n x^{m+1} \sum_{k=0}^n \binom{m + k}{k} (1 - x)^k. \]
A proof by generating functions

(Damjanovic–Klamkin–Ruehr; Prodinger)

Let

\[f(u, v; x) := \sum_{m, n \geq 0} u^m v^n (1 - x)^{n+1} \sum_{k=0}^{m} \binom{n+k}{k} x^k. \]

Then

\[f(v, u; 1 - x) = \sum_{m, n \geq 0} u^m v^n x^{m+1} \sum_{k=0}^{n} \binom{m+k}{k} (1 - x)^k. \]

We have

\[f(u, v; x) = \frac{1}{1 - u} \sum_{n \geq 0} v^n (1 - x)^{n+1} \sum_{k \geq 0} \binom{n+k}{k} (ux)^k \]

\[= \frac{1}{1 - u} \sum_{n \geq 0} v^n (1 - x)^{n+1} \frac{1}{(1 - ux)^{n+1}} \]

\[= \frac{1 - x}{(1 - u)(1 - ux)} \frac{1}{1 - \frac{v(1-x)}{1-ux}} \]

\[= \frac{1 - x}{1 - u} \frac{1}{1 - ux - v(1-x)}. \]
Hence

\[f(v, u; 1 - x) = \frac{x}{1 - v} \frac{1}{1 - ux - v(1 - x)} \]

and

\[f(u, v; x) + f(v, u; 1 - x) = \frac{1}{1 - ux - v(1 - x)} \left(\frac{1-x}{1-u} + \frac{x}{1-v} \right) \]

\[= \frac{1}{(1-u)(1-v)}. \]
Hence

\[f(v, u; 1 - x) = \frac{x}{1 - v} \frac{1}{1 - ux - v(1 - x)} \]

and

\[f(u, v; x) + f(v, u; 1 - x) = \frac{1}{1 - ux - v(1 - x)} \left(\frac{1 - x}{1 - u} + \frac{x}{1 - v} \right) \]

\[= \frac{1}{(1 - u)(1 - v)}. \]

So

\[f(u, v; x) + f(v, u; 1 - x) = \sum_{m, n \geq 0} u^m v^n, \]

which yields (dM) by combining the last equation with the first two equations of the previous page, and taking the coefficient of \(u^m v^n \). \(\square \)
Recall that de Montmort's identity is given by

\[1 = (1 - x)^{n+1} \sum_{k=0}^{m}(n+k) \frac{x^k}{k!} + x^{m+1} \sum_{k=0}^{n}(m+k) \frac{y^k}{k!}(1 - x)^k. \]

(dM)

The substitution \(x \mapsto \frac{x}{x+y} \) and multiplication of both sides by \((x+y)^{m+n+2} \) gives the homogeneous form of the identity:

\[(x+y)^{m+n+2} = y^{n+1} \sum_{k=0}^{m}(n+k) \frac{x^k}{k!}(x+y)^{m+1-k} - x^{m+1} \sum_{k=0}^{n}(m+k) \frac{y^k}{k!}(x+y)^{n+1-k}. \]

(Here, \(x \) and \(y \) are commuting variables.)

The last identity has a combinatorial interpretation in terms of weighted lattice paths.
Recall that \textit{de Montmort's identity} is given by

\[1 = (1 - x)^{n+1} \sum_{k=0}^{m} \binom{n + k}{k} x^k + x^{m+1} \sum_{k=0}^{n} \binom{m + k}{k} (1 - x)^k. \quad \text{(dM)}\]
Recall that de Montmort’s identity is given by

\[
1 = (1 - x)^{n+1} \sum_{k=0}^{m} \binom{n+k}{k} x^k + x^{m+1} \sum_{k=0}^{n} \binom{m+k}{k} (1 - x)^k. \quad (dM)
\]

The substitution \(x \mapsto x/(x+y) \) and multiplication of both sides by \((x+y)^{m+n+2}\) gives the homogeneous form of the identity:

\[
(x+y)^{m+n+2} = y^{n+1} \sum_{k=0}^{m} \binom{n+k}{k} x^k (x+y)^{m+1-k} + x^{m+1} \sum_{k=0}^{n} \binom{m+k}{k} y^k (x+y)^{n+1-k}.
\]

(Here, \(x \) and \(y \) are commuting variables.)
Recall that de Montmort’s identity is given by

\[1 = (1 - x)^{n+1} \sum_{k=0}^{m} \binom{n+k}{k} x^k + x^{m+1} \sum_{k=0}^{n} \binom{m+k}{k} (1 - x)^k. \]

(dM)

The substitution \(x \mapsto \frac{x}{(x + y)} \) and multiplication of both sides by \((x + y)^{m+n+2}\) gives the homogeneous form of the identity:

\[(x + y)^{m+n+2} = y^{n+1} \sum_{k=0}^{m} \binom{n+k}{k} x^k (x + y)^{m+1-k} + x^{m+1} \sum_{k=0}^{n} \binom{m+k}{k} y^k (x + y)^{n+1-k}. \]

(Here, \(x \) and \(y \) are commuting variables.)

The last identity has a combinatorial interpretation in terms of weighted lattice paths.
Consider all lattice paths from \((0, 0)\) to \((m + 1, n + 1)\) in the planar integer lattice (using only unit east and north steps). Such a path \(P\) consists of \(m + n + 2\) successive unit steps.
Consider all lattice paths from \((0,0)\) to \((m+1,n+1)\) in the planar integer lattice (using only unit east and north steps).
Such a path \(P\) consists of \(m+n+2\) successive unit steps.

The **weight** \(w(P)\) of a path \(P\) is defined to be the product of the weight of the respective steps \(s\) of the path, i.e., \(w(P) = \prod_{s \in P} w(s)\).
Consider all lattice paths from \((0, 0)\) to \((m + 1, n + 1)\) in the planar integer lattice (using only unit east and north steps). Such a path \(P\) consists of \(m + n + 2\) successive unit steps.

The **weight** \(w(P)\) of a path \(P\) is defined to be the product of the weight of the respective steps \(s\) of the path, i.e., \(w(P) = \prod_{s \in P} w(s)\).

Define the weight function \(w\) as follows:

\[
\begin{align*}
 w((i, j) \rightarrow (i + 1, j)) &= \begin{cases}
 x & (j < n+1), \\
 x + y & (j = n+1),
 \end{cases} \\
 w((i, j) \rightarrow (i, j + 1)) &= \begin{cases}
 y & (i < m+1), \\
 x + y & (i = m+1).
 \end{cases}
\end{align*}
\]

It is not difficult to see that the generating function of all paths (from \((0, 0)\) to \((m + 1, n + 1)\)) is

\[
\sum_{P} w(P) = (x + y)^{m+n+2}.
\]
Consider all lattice paths from \((0, 0)\) to \((m + 1, n + 1)\) in the planar integer lattice (using only unit east and north steps). Such a path \(P\) consists of \(m + n + 2\) successive unit steps.

The weight \(w(P)\) of a path \(P\) is defined to be the product of the weight of the respective steps \(s\) of the path, i.e., \(w(P) = \prod_{s \in P} w(s)\). Define the weight function \(w\) as follows:

\[
\begin{align*}
 w((i, j) \rightarrow (i + 1, j)) &:= \begin{cases}
 x & (j < n + 1), \\
 x + y & (j = n + 1),
 \end{cases} \\
 w((i, j) \rightarrow (i, j + 1)) &:= \begin{cases}
 y & (i < m + 1), \\
 x + y & (i = m + 1).
 \end{cases}
\end{align*}
\]

It is not difficult to see that the generating function of all paths (from \((0, 0)\) to \((m + 1, n + 1)\)) is

\[
\sum_{P} w(P) = (x + y)^{m+n+2}.
\]
Generalizations of an identity of de Montmort
On the other hand, each path P ends either with a horizontal step or with a vertical step.
On the other hand, each path P ends either with a horizontal step or with a vertical step.

Consider first the paths which end with a horizontal step.

Then the last vertical step will be $(k, n) \to (k, n + 1)$ for some $k \in \{0, 1, \ldots, m\}$.

For given k all such paths have weight $y^{n+1}x^k(x + y)^{m+1-k}$ and the number of such paths is $\binom{n+k}{k}$.
On the other hand, each path \(P \) ends either with a horizontal step or with a vertical step.

Consider first the paths which end with a horizontal step.

Then the last vertical step will be \((k, n) \rightarrow (k, n + 1)\) for some \(k \in \{0, 1, \ldots, m\} \).

For given \(k \) all such paths have weight \(y^{n+1}x^k(x+y)^{m+1-k} \) and the number of such paths is \(\binom{n+k}{k} \).

Hence the sum of the weights of all paths which end with a horizontal step equals

\[
y^{n+1} \sum_{k=0}^{m} \binom{n+k}{k} x^k (x+y)^{m+1-k}.
\]
On the other hand, each path P ends either with a horizontal step or with a vertical step.

Consider first the paths which end with a horizontal step.

Then the last vertical step will be $(k, n) \rightarrow (k, n + 1)$ for some $k \in \{0, 1, \ldots, m\}$.

For given k all such paths have weight $y^{n+1}x^k(x + y)^{m+1-k}$ and the number of such paths is $\binom{n+k}{k}$.

Hence the sum of the weights of all paths which end with a horizontal step equals

$$y^{n+1} \sum_{k=0}^{m} \binom{n+k}{k} x^k(x + y)^{m+1-k}.$$

Similarly, the sum of the weights of all paths which end with a vertical step equals

$$x^{m+1} \sum_{k=0}^{n} \binom{m+k}{k} y^k(x + y)^{n+1-k}.$$
A proof using the beta integral

By the evaluation of the beta integral we have for $x \in (0, 1)$:

$1 = \frac{(m+n+1)!}{m!n!} \int_0^1 t^m (1-t)^n \, dt = \frac{(m+n+1)!}{m!n!} \int_0^x t^m (1-t)^n \, dt + \frac{(m+n+1)!}{m!n!} \int_x^1 t^m (1-t)^n \, dt$.

Then (dM) will follow from this identity if we can prove that

$\frac{(m+n+1)!}{m!n!} \int_0^x t^m (1-t)^n \, dt = x^{m+1} \sum_{k=0}^{m} \binom{m+1}{k} (1-x)^k$.

Generalizations of an identity of de Montmort
A proof using the beta integral

By the evaluation of the beta integral we have for \(x \in (0, 1) \):

\[
1 = \frac{(m + n + 1)!}{m! \, n!} \int_0^1 t^m(1 - t)^n \, dt \\
= \frac{(m + n + 1)!}{m! \, n!} \int_0^x t^m(1 - t)^n \, dt + \frac{(m + n + 1)!}{m! \, n!} \int_x^1 t^m(1 - t)^n \, dt \\
= \frac{(m + n + 1)!}{m! \, n!} \int_0^x t^m(1 - t)^n \, dt + \frac{(m + n + 1)!}{m! \, n!} \int_0^{1-x} t^n(1 - t)^m \, dt.
\]
By the evaluation of the *beta integral* we have for \(x \in (0, 1) \):

\[
1 = \frac{(m + n + 1)!}{m! \ n!} \int_{0}^{1} t^{m}(1 - t)^{n} \, dt
\]

\[
= \frac{(m + n + 1)!}{m! \ n!} \int_{0}^{x} t^{m}(1 - t)^{n} \, dt + \frac{(m + n + 1)!}{m! \ n!} \int_{x}^{1} t^{m}(1 - t)^{n} \, dt
\]

\[
= \frac{(m + n + 1)!}{m! \ n!} \int_{0}^{x} t^{m}(1 - t)^{n} \, dt + \frac{(m + n + 1)!}{m! \ n!} \int_{0}^{1-x} t^{n}(1 - t)^{m} \, dt.
\]

Then \((dM)\) will follow from this identity if we can prove that

\[
\frac{(m + n + 1)!}{m! \ n!} \int_{0}^{x} t^{m}(1 - t)^{n} \, dt = x^{m+1} \sum_{k=0}^{n} \frac{(m + 1)_{k}}{k!} (1 - x)^{k}.
\]
The last identity follows by the string of equalities

\[
\int_0^x t^m (1 - t)^n \, dt = x^{m+1} \int_0^1 s^m (1 - s + s(1 - x))^n \, ds \\
= x^{m+1} \sum_{k=0}^{n} \binom{n}{k} (1 - x)^k \int_0^1 s^{m+k} (1 - s)^{n-k} \, ds \\
= \frac{m! \ n! \ x^{m+1}}{(m + n + 1)!} \sum_{k=0}^{n} \frac{(m + 1)_k}{k!} (1 - x)^k.
\]
The last identity follows by the string of equalities

\[
\int_0^x t^m (1 - t)^n \, dt = x^{m+1} \int_0^1 s^m (1 - s + s(1 - x))^n \, ds
\]

\[
= x^{m+1} \sum_{k=0}^n \binom{n}{k} (1 - x)^k \int_0^1 s^{m+k} (1 - s)^{n-k} \, ds
\]

\[
= \frac{m! \, n! \, x^{m+1}}{(m + n + 1)!} \sum_{k=0}^n \frac{(m + 1)_k}{k!} (1 - x)^k.
\]

The last integral on the previous page is an incomplete beta function, which is usually expressed as a hypergeometric function (also for \(m, n\) complex with \(\Re m, \Re n > -1\)):

\[
B_x(m+1, n+1) := \int_0^x t^m (1 - t)^n \, dt = \frac{1}{m + 1} x^{m+1} \, _2F_1\left(-n, m + 1; m + 2; x\right)
\]

\((x \in (0, 1))\). The proof is by binomial expansion of \((1 - t)^n\).
Thus, we have

\[
1 = \frac{\Gamma(n + m + 2)}{\Gamma(m + 1)\Gamma(n + 1)} B_x(m + 1, n + 1) \\
+ \frac{\Gamma(n + m + 2)}{\Gamma(m + 1)\Gamma(n + 1)} B_{1-x}(n + 1, m + 1)
\]

\((x \in (0, 1), \ m, n \in \mathbb{C}, \ \Re m, \Re n > -1)\).

which even extends to complex (non-integer) values of \(m, n\).
Thus, we have

\[1 = \frac{\Gamma(n + m + 2)}{\Gamma(m + 1)\Gamma(n + 1)} B_x(m + 1, n + 1) \]
\[+ \frac{\Gamma(n + m + 2)}{\Gamma(m + 1)\Gamma(n + 1)} B_{1-x}(n + 1, m + 1) \]

\[(x \in (0, 1), \ m, n \in \mathbb{C}, \ \Re m, \Re n > -1) \]

which even extends to complex (non-integer) values of \(m, n \).

Thus we have a **complex extension** of \((dM)\). The expression

\[p_{m,n}(x) = (1 - x)^{n+1} \sum_{k=0}^{m} \frac{\Gamma(n + k + 1)}{\Gamma(n + 1) \Gamma(k + 1)} x^k \]

in de Montmort’s identity extends to

\[p_{m,n}(x) = \frac{\Gamma(m + n + 2)}{\Gamma(m + 1)\Gamma(n + 1)} B_{1-x}(n + 1, m + 1) \]

\[(x \in (0, 1), \ m, n \in \mathbb{C}, \ \Re n > -1) \]
Consider (*)& for $x \in (0, 1)$ and $n \in \mathbb{C}$ with $\Re n > -1$, and apply the fractional extension of finite sums proposed by Müller & Schleicher (2005).
Consider (\ast) for $x \in (0, 1)$ and $n \in \mathbb{C}$ with $\Re n > -1$, and apply the fractional extension of finite sums proposed by Müller & Schleicher (2005). Since for $k \in \mathbb{C}$ with $\Re k \geq 0$ we have

$$f(k) := \frac{\Gamma(n + k + 1)}{\Gamma(n + 1) \Gamma(k + 1)} x^k (1 - x)^{n+1} = o(1) \quad \text{as } \Re k \to \infty,$$
Consider \((\ast)\) for \(x \in (0, 1)\) and \(n \in \mathbb{C}\) with \(\Re n > -1\), and apply the fractional extension of finite sums proposed by Müller & Schleicher (2005). Since for \(k \in \mathbb{C}\) with \(\Re k \geq 0\) we have

\[
f(k) := \frac{\Gamma(n + k + 1)}{\Gamma(n + 1) \Gamma(k + 1)} x^k (1 - x)^{n+1} = o(1) \quad \text{as } \Re k \to \infty,
\]

their recipe of fractional extension of the sum \(\sum_{k=0}^{m} f(k)\) is

\[
p_{m,n}(x) = \sum_{k=0}^{\infty} (f(k) - f(k + m + 1)) = \]

\[
(1 - x)^{n+1} \sum_{k=0}^{\infty} \frac{(n + 1)_k}{k!} x^k - (1 - x)^{n+1} \sum_{k=0}^{\infty} \frac{\Gamma(n + m + k + 2)}{\Gamma(n + 1) \Gamma(m + k + 2)} x^{k+m+1}
\]

\[
= 1 - \frac{\Gamma(n + m + 2)}{\Gamma(m + 2) \Gamma(n + 1)} x^{m+1} (1 - x)^{n+1} \, _2F_1\left(\frac{n + m + 2}{m + 2}; x\right)
\]

\[
= 1 - \frac{\Gamma(n + m + 2)}{\Gamma(m + 2) \Gamma(n + 1)} x^{m+1} \, _2F_1\left(-n, m + 1; m + 2; x\right)
\]

\[
= 1 - \frac{\Gamma(n + m + 2)}{\Gamma(m + 1) \Gamma(n + 1)} B_x(m + 1, n + 1),
\]

which gives the same result.
Just as (dM) can be obtained by splitting a beta integral into two parts and evaluating the resulting incomplete beta integrals, we can prove and interpret Damjanovic, Klamkin and Ruehr’s multivariable extension of (dM) by splitting Dirichlet’s \((n − 1)\)-dimensional beta integral with nonnegative integer exponents into \(n\) parts.
Just as \((dM)\) can be obtained by splitting a beta integral into two parts and evaluating the resulting incomplete beta integrals, we can prove and interprete Damjanovic, Klamkin and Ruehr's multivariable extension of \((dM)\) by splitting Dirichlet's \((n - 1)\)-dimensional beta integral with nonnegative integer exponents into \(n\) parts.

For convenience, we state Dirichlet's \(n\)-dimensional beta integral:
Let \(\Delta_n\) be the simplex in \(\mathbb{R}^n\) which has vertices 0 and the standard basis vectors \(e_1, \ldots, e_n\). Let \(a_1, \ldots, a_n, b \in \mathbb{C}\) with real part \(> -1\). Then Dirichlet's integral is as follows.

\[
I_{a_1, \ldots, a_{n+1}} := \int_{\Delta_n} t_1^{a_1} \cdots t_n^{a_n} (1 - t_1 - \cdots - t_n)^{a_{n+1}} dt_1 \cdots dt_n
= \frac{\Gamma(a_1 + 1) \cdots \Gamma(a_{n+1} + 1)}{\Gamma(a_1 + \cdots + a_{n+1} + n + 1)}.
\]

Note that \(I_{a_1, \ldots, a_{n+1}}\) is symmetric in \(a_1, \ldots, a_{n+1}\).
There are various generalizations of \((dM) \).

The first generalization of \((dM) \) is a simple \(q \)-analogue:

\[
1 = \left(x; q \right)_n + 1 \sum_{k=0}^{n} \left[\begin{array}{c} n+k \\ k \end{array} \right] q^k x^k + \left(x; q \right)_m + 1 \sum_{k=0}^{m} \left[\begin{array}{c} m+k \\ k \end{array} \right] q^k \left(x; q \right)_k.
\]

Here, \(\left(x; q \right)_k \) is the \(q \)-Pochhammer symbol and \(\left[\begin{array}{c} n \\ k \end{array} \right]_q \) is the \(q \)-binomial coefficient.

While the first and second term on the right-hand side of \((dM) \) are evidently symmetric with respect to the simple involution \((x, n, m) \mapsto (1-x, m, n)\)), the corresponding symmetry for \((q-dM) \) is less evident.

To find the "hidden" symmetry, we look at the transition matrix of the two respective polynomial bases \(x^n \), \(\left(x; q \right)_n \).
There are various generalizations of (dM).
q-Extensions

There are various generalizations of (dM).

The first generalization of (dM) is a simple q-analogue:

$$1 = (x; q)_{n+1} \sum_{k=0}^{m} \binom{n+k}{k}_q x^k + x^{m+1} \sum_{k=0}^{n} \binom{m+k}{k}_q q^k (x; q)_k. \quad (q\text{-dM})$$

Here, $(x; q)_k := \prod_{j=0}^{k-1} (1 - xq^j)$ is the q-Pochhammer symbol and

$$\binom{n}{k}_q := \frac{(q; q)_n}{(q; q)_k (q; q)_{n-k}},$$

where $n \geq k \geq 0$, is the q-binomial coefficient.
q-Extensions

There are various generalizations of (dM).

The first generalization of (dM) is a simple q-analogue:

$$1 = (x; q)_{n+1} \sum_{k=0}^{m} \left[\begin{array}{c} n+k \\ k \end{array} \right]_q x^k + x^{m+1} \sum_{k=0}^{n} \left[\begin{array}{c} m+k \\ k \end{array} \right]_q q^k (x; q)_k. \quad (q-dM)$$

Here, $(x; q)_k := \prod_{j=0}^{k-1} (1 - xq^j)$ is the q-Pochhammer symbol and $\left[\begin{array}{c} n \\ k \end{array} \right]_q := \frac{(q; q)_n}{(q; q)_k (q; q)_{n-k}}$, where $n \geq k \geq 0$, is the q-binomial coefficient.

While the first and second term on the right-hand side of (dM) are evidently symmetric with respect to the simple involution $(x, n, m) \mapsto (1 - x, m, n)$, the corresponding symmetry for $(q-dM)$ is less evident.
There are various generalizations of \((dM)\).

The first generalization of \((dM)\) is a simple \(q\)-analogue:

\[
1 = (x; q)_{n+1} \sum_{k=0}^{m} \left[\begin{array}{c} n + k \\ k \end{array} \right]_q x^k + x^{m+1} \sum_{k=0}^{n} \left[\begin{array}{c} m + k \\ k \end{array} \right]_q q^k (x; q)_k. \quad (q\text{-dM})
\]

Here, \((x; q)_k := \prod_{j=0}^{k-1} (1 - xq^j)\) is the \(q\)-Pochhammer symbol and \nabla^{\left[\begin{array}{c} n \\ k \end{array}\right]}_q := \frac{(q; q)_n}{(q; q)_k (q; q)_{n-k}}, \) where \(n \geq k \geq 0\), is the \(q\)-binomial coefficient.

While the first and second term on the right-hand side of \((dM)\) are evidently symmetric with respect to the simple involution \((x, n, m) \mapsto (1 - x, m, n)\), the corresponding symmetry for \((q\text{-dM})\) is less evident.

To find the “hidden” symmetry, we look at the transition matrix of the two respective polynomial bases \([x^n]_{n \geq 0}, [(x; q)_n]_{n \geq 0} \).
By the \(q \)-binomial theorem, we have

\[
(x; q)_n = \sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right]_q (-1)^k q^{k(k-1)/2} x^k.
\]
By the q-binomial theorem, we have

$$(x; q)_n = \sum_{k=0}^{n} \binom{n}{k}_q (-1)^k q^{{k \choose 2}} x^k.$$

Now, defining the (lower-triangular) matrix $F = (f_{nk})_{n,k \in \mathbb{Z}}$ by its entries

$$f_{nk} = \binom{n}{k}_q (-1)^k q^{{k \choose 2}},$$

the inverse of F is known to be the (lower-triangular) matrix $G = (g_{nk})_{n,k \in \mathbb{Z}}$, with entries

$$g_{nk} = \binom{n}{k}_q (-1)^k q^{{k \choose 2} + k(1-n)}.$$
By the q-binomial theorem, we have

$$(x; q)_n = \sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right]_q (-1)^k q^{k(k-1)} x^k.$$

Now, defining the (lower-triangular) matrix $F = (f_{nk})_{n,k \in \mathbb{Z}}$ by its entries

$$f_{nk} = \left[\begin{array}{c} n \\ k \end{array} \right]_q (-1)^k q^{k(k-1)},$$

the inverse of F is known to be the (lower-triangular) matrix $G = (g_{nk})_{n,k \in \mathbb{Z}}$, with entries

$$g_{nk} = \left[\begin{array}{c} n \\ k \end{array} \right]_q (-1)^k q^{k(k-1)+k(1-n)}.$$

A simple computation reveals that

$$g_{nk}(q) = f_{nk}(q^{-1}).$$
Therefore, the relation

\[(x; q)_n = \sum_{k=0}^{n} f_{nk}(q)x^k\]

is equivalent to

\[x^n = \sum_{k=0}^{n} f_{nk}(q^{-1})(x; q)_k.\]
Therefore, the relation

\[(x; q)_n = \sum_{k=0}^{n} f_{nk}(q)x^k \]

is equivalent to

\[x^n = \sum_{k=0}^{n} f_{nk}(q^{-1})(x; q)_k. \]

It is now natural to define the following linear operator \(\phi \) on \(\mathcal{P} = \mathbb{F}(q)[x] \) (the vector space of polynomials in \(x \) with coefficients that are rational functions in \(q \) over the field \(\mathbb{F} \)) by

\[\phi \sum_{k \geq 0} c_k(q)x^k = \sum_{k \geq 0} c_k(q^{-1})(x; q)_k. \]
Therefore, the relation

\[(x; q)_n = \sum_{k=0}^{n} f_{nk}(q)x^k\]

is equivalent to

\[x^n = \sum_{k=0}^{n} f_{nk}(q^{-1})(x; q)_k.\]

It is now natural to **define** the following linear operator \(\phi \) on \(P = \mathbb{F}(q)[x] \) (the vector space of polynomials in \(x \) with coefficients that are rational functions in \(q \) over the field \(\mathbb{F} \)) by

\[\phi \sum_{k \geq 0} c_k(q)x^k = \sum_{k \geq 0} c_k(q^{-1})(x; q)_k.\]

Note that \(\phi \) is an **involution** (this follows immediately from the inverse relations) but not a homomorphism (unless \(q = 1 \)).
To derive \((q\text{-dM})\) using Bézout’s identity, observe that for each \(m, n\) there exist unique polynomials \(r_{m,n}\) and \(s_{m,n}\) of degree \(m, n\), respectively, such that

\[
1 = (x; q)_{n+1}r_{m,n}(x; q) + x^{m+1}s_{m,n}(x; q).
\]
To derive \((q\text{-dM})\) using Bézout’s identity, observe that for each \(m, n\) there exist unique polynomials \(r_{m,n}\) and \(s_{m,n}\) of degree \(m, n\), respectively, such that

\[
1 = (x; q)_{n+1} r_{m,n}(x; q) + x^{m+1} s_{m,n}(x; q).
\]

This implies

\[
\frac{1}{(x; q)_{n+1}} = r_{m,n}(x; q) + O(x^{m+1}) \quad \text{as} \quad x \to 0.
\]
To derive \((q\text{-dM})\) using Bézout’s identity, observe that for each \(m, n\) there exist unique polynomials \(r_{m,n}\) and \(s_{m,n}\) of degree \(m, n\), respectively, such that

\[
1 = (x; q)_{n+1}r_{m,n}(x; q) + x^{m+1}s_{m,n}(x; q) .
\]

This implies

\[
\frac{1}{(x; q)_{n+1}} = r_{m,n}(x; q) + O(x^{m+1}) \quad \text{as} \quad x \to 0.
\]

The next step is to compute \(r_{m,n}(x; q)\) by using

\[
\frac{1}{(x; q)_{n+1}} = \sum_{k=0}^{m} \binom{n+k}{k}_q x^k + O(x^{m+1}) \quad \text{as} \quad x \to 0,
\]

a result which is easily deduced from the nonterminating \(q\)-binomial theorem.
If we can show that

$$\phi\left((x; q)_{n+1} \sum_{k=0}^{m} \left[\begin{array}{c} n + k \\ k \end{array} \right]_q x^k \right) = x^{n+1} s_{n,m}(x; q),$$

for

$$s_{m,n}(x; q) = \sum_{k=0}^{n} \left[\begin{array}{c} m + k \\ k \end{array} \right]_q q^k(x; q)_k,$$

then we are done, as $s_{n,m}(x; q)$ must have degree m and be unique.
The computations are as follows:

\[
\phi \left((x; q)_{n+1} \sum_{k=0}^{m} \binom{n+k}{k}_q x^k \right)
\]

\[
= \phi \sum_{l=0}^{n+1} \sum_{k=0}^{m} \binom{n+1}{l}_q q^{l(2)} \binom{n+k}{k}_q x^{k+l}
\]

\[
= \sum_{l=0}^{n+1} \sum_{k=0}^{m} \binom{n+1}{l}_q q^{l(2)} \binom{n+k}{k}_q^{-1} (x; q)_{k+l}
\]

\[
= \sum_{k=0}^{m} \binom{n+k}{k}_q q^{-1} (x; q)_k \sum_{l=0}^{n+1} \binom{n+1}{l}_q q^{l(2)} (xq^k; q)_l
\]

\[
= \sum_{k=0}^{m} \binom{n+k}{k}_q q^{-1} (x; q)_k x^{n+1} q^{k(n+1)} = x^{n+1} \sum_{k=0}^{m} \binom{n+k}{k}_q q^{k} (x; q)_k,
\]

which settles \((q\text{-dM})\).
We have the following **symmetric** generalization of \((q\text{-dM})\):

\[
1 = (bz, \frac{b}{z}; q)_{n+1} (\frac{b}{a}; q)_{n+1} \sum_{k=0}^{m} (q^{n+1}, az, \frac{a}{z}; q)_k (q, \frac{aq}{b}; q)_k q^k + (az, \frac{a}{z}; q)_{m+1} (\frac{ab}{a}; q)_{m+1} \sum_{k=0}^{n} (q^{m+1}, bz, \frac{b}{z}; q)_k (q, \frac{bq}{a}; q)_k q^k.
\]

This generalizes further to

\[
1 = (bz, \frac{b}{z}; q)_{n+1} (ab, \frac{b}{a}; q)_{n+1} \sum_{k=0}^{m} (q^{n+1}, az, \frac{a}{z}; q)_k (q, \frac{aq}{b}, \frac{abq}{1}; q)_k q^k + (az, \frac{a}{z}; q)_{m+1} (\frac{ab}{a}; q)_{m+1} \sum_{k=0}^{n} (q^{m+1}, bz, \frac{b}{z}; q)_k (q, \frac{bq}{a}, \frac{abq}{1}; q)_k q^k.
\]

And yet further to

\[
1 = (ac, \frac{c}{a}, \frac{bz}{b}; q)_{n+1} (ab, \frac{b}{a}, \frac{cz}{c}; q)_{n+1} \sum_{k=0}^{m} (1 - acq^{n+2k}) (acq^{n+2k}, bcq^{n+2k}, \frac{c}{b}, q^{n+1}, az, \frac{a}{z}; q)_k (1 - acq^{n+2k}) (q, \frac{aq}{b}, \frac{abq}{1}, ac, cq^{n+1+2k}, \frac{czq^{n+1}}{1}; q)_k q^k + (bc, \frac{c}{b}, \frac{az}{a}, \frac{a}{z}; q)_{m+1} (ab, \frac{a}{b}, \frac{cz}{c}, \frac{c}{z}; q)_{m+1} \sum_{k=0}^{n} (1 - bcq^{m+2k}) (bcq^{m+2k}, acq^{m+2k}, \frac{c}{a}, q^{m+1}, bz, \frac{b}{z}; q)_k (1 - bcq^{m+2k}) (q, \frac{bq}{a}, \frac{abq}{1}, bc, cq^{m+1+2k}, \frac{czq^{m+1}}{1}; q)_k q^k.
\]
We have the following symmetric generalization of \((q\text{-dM})\):

\[
1 = \frac{(bz; q)_{n+1}}{(b/a; q)_{n+1}} \sum_{k=0}^{m} \frac{(q^{n+1}, az; q)_k}{(q, aq/b; q)_k} q^k + \frac{(az; q)_{m+1}}{(a/b; q)_{m+1}} \sum_{k=0}^{n} \frac{(q^{m+1}, bz; q)_k}{(q, bq/a; q)_k} q^k
\]

(where \(b\) is a redundant parameter kept for symmetry).
We have the following symmetric generalization of \((q\text{-d}M)\):

\[
1 = \frac{(bz; q)_{n+1}}{(b/a; q)_{n+1}} \sum_{k=0}^{m} \frac{(q^{n+1}, az; q)_k}{(q, aq/b; q)_k} q^k + \frac{(az; q)_{m+1}}{(a/b; q)_{m+1}} \sum_{k=0}^{n} \frac{(q^{m+1}, bz; q)_k}{(q, bq/a; q)_k} q^k
\]

(\text{where } b \text{ is a redundant parameter kept for symmetry}).

This generalizes further to

\[
1 = \frac{(bz, b/z; q)_{n+1}}{(ab, b/a; q)_{n+1}} \sum_{k=0}^{m} \frac{(q^{n+1}, az, a/z; q)_k}{(q, aq/b, abq^{1+n}; q)_k} q^k
\]

\[
+ \frac{(az, a/z; q)_{m+1}}{(ab, a/b; q)_{m+1}} \sum_{k=0}^{n} \frac{(q^{m+1}, bz, b/z; q)_k}{(q, bq/a, abq^{1+m}; q)_k} q^k,
\]
We have the following symmetric generalization of \((q\text{-dM})\):

\[
1 = \left(\frac{b}{a}; q \right)_n + \sum_{k=0}^{m} \left(\frac{q^{n+1}, az; q}{(q, aq/b; q)_k} \right) q^k + \left(\frac{az; q}{(a/b; q)_m} \right) \sum_{k=0}^{n} \left(\frac{q^{m+1}, b; q}{(q, bq/a; q)_k} \right) q^k
\]

(where \(b \) is a redundant parameter kept for symmetry).

This generalizes further to

\[
1 = \left(\frac{b}{a}; q \right)_n + \sum_{k=0}^{m} \left(\frac{q^{n+1}, az, a/z; q}{(q, aq/b, abq^{1+n}; q)_k} \right) q^k
\]

\[
+ \left(\frac{az, a/z; q}{(a/b; q)_m} \right) \sum_{k=0}^{n} \left(\frac{q^{m+1}, b, b/z; q}{(q, bq/a, abq^{1+m}; q)_k} \right) q^k,
\]

and yet further to

\[
1 = \left(\frac{a}{c}, c; q \right)_n + \sum_{k=0}^{m} \frac{(1 - acq^{n+2k})(acq^n, bcq^n, c/b, q^{n+1}, az, a/z; q)_k}{(1 - acq^n)(q, aq/b, abq^{1+n}, ac, cq^{n+1}/z, czq^{n+1}; q)_k} q^k
\]

\[
+ \left(\frac{bc, c/b; q}{(a/b; q)_m} \right) \sum_{k=0}^{n} \frac{(1 - bcq^{m+2k})(bcq^m, acq^m, c/a, q^{m+1}, bz, b/z; q)_k}{(1 - bcq^m)(q, bq/a, abq^{1+m}, bc, cq^{m+1}/z, czq^{m+1}; q)_k} q^k.
\]