POLYLOGARITHMIC NETWORK NAVIGABILITY USING COMPACT METRICS WITH SMALL STRETCH

Pierre Fraigniaud*
CNRS and University of Paris Diderot

Cyril Gavoille
University of Bordeaux

*Speaker
MOTIVATIONS

- Milgram Experiment in acquaintanceship networks (60’s):
 - “people are linked by short chains of acquaintances that can be discovered in a distributed manner”

- Kleinberg Model (2000):
 - Grids enhanced with long-range links distributed according to harmonic distributions $\approx 1/\text{dist}^d(x,y)$
A AUGMENTED GRAPH MODEL

- A pair \((G, \varphi)\) where
 - \(G\) is a graph
 - \(\varphi = \{ \varphi_u, u \in V(G) \}\) is a collection of probability distributions: \(\varphi_u(v) = \Pr(u \rightarrow v)\)
- One long-range link is added to every node \(u\), whose other extremity (long-range contact) \(v\) is chosen with probability \(\varphi_u(v)\)
GREEDY ROUTING

- \(H \in (G, \varphi) \)

- Source \(s \) and target \(t \)

- Current node \(x \) selects next node \(y \) as its neighbor closest to \(t \) in \(G \), i.e., according to \(\text{dist}_G \)

Remarks:

- Node \(x \) may select its long-range contact

- Selection according to \(\text{dist}_G \)
PERFORMANCES

Measure = maximum, taken over all pairs source-destination \((s,t)\), of the expected number of steps of greedy routing in \((G,\varphi)\) from \(s\) to \(t\).
POLYLOG GREEDY ROUTING: GRAPH CLASSES

- **Grids** [Kleinberg, STOC 2000]
- **Intersection systems** [Kleinberg, NIPS 2001]
- **Bounded ball growth** [Duchon, Hanusse, Lebhar, Schabanel, TCS 2006]
- **Bounded doubling dimension** [Slivkins, PODC 2005]
- **Trees** [Flammini, Moscardelli, Navarra, Perennes, DISC 2005]
- **Bounded treewidth** [F., ESA 2005]
- **Minor-excluding** [Abraham, Gavoille, PODC 07]
GREEDY ROUTING IN ARBITRARY GRAHS

- Uniform augmentation [Peleg 2006]: $O(\sqrt{n})$
- Best known upper bound
 - $O(n^{1/3})$ [F., Gavoille, Kosowski, Lebhar, Lotker, SPAA 2007]
- Best known lower bound
 - $\Omega(2^{\sqrt{\log n}})$ [F., Lebhar, Lotker, ESA 06]
- Bad news: polylogarithmic routing cannot be achieved using the distance metric of the base graph
Greedy routing in \((G, \varphi)\) according to \(\mu: V \times V \to \mathbb{R}^+\)

Greedy routing does not work for arbitrary function \(\mu\) (dead-end or ping-pong):

Example: discrete metric: \(\mu(x,y)=1 \iff x \neq y\)

Greedy routing converges if:

\(\mu\) is the distance metric in a spanner of \(G\).
Definition The navigability diameter, \(\text{nav}(G, \varphi, \mu) \), of \((G, \varphi, \mu)\) is the maximum, taken over all pairs source-destination, of the expected number of steps of greedy routing in \((G, \varphi)\) according to \(\mu\).

Remark For any \(G\), there exist \(\varphi\) and \(\mu\) such that \(\text{nav}(G, \varphi, \mu) \leq O(\log n)\).
THE NAVIGABILITY PROBLEM

Given any (connected) graph G, find

- an augmentation ϕ
- a metric μ

such that:

- $\text{nav}(G, \phi, \mu)$ is small ($\text{polylog}(n)$)
- μ has small stretch: $\max_{x,y} \mu(x,y) / \text{dist}_G(x,y)$
Our result: For any n-node connected graph G with a positive edge cost function, there exist

- an augmenting distribution φ, and
- a semimetric μ with stretch $O(\log n)$,

such that $\text{nav}(G, \varphi, \mu) \leq O(\text{polylog}(n))$.

The semimetric μ can be encoded at every node using $O(\text{polylog}(n) \log(\Delta))$ bits.
Theorem For any n-node connected graph G with a positive edge cost function, and any integer $k \geq 1$, there exist

- an augmenting distribution ϕ, and
- a semimetric μ with stretch $2k-1$,

such that $\text{nav}(G,\phi,\mu) \leq O(k^2 n^{2/k} \log^2 n)$.

The semimetric μ can be encoded at every node using $O(k n^{1/k} \log n \log(k\Delta))$ bits, where Δ denotes the normalized diameter of G.
Proposition There exist an edge-weighted graph G, a $(1+\varepsilon)$-spanner S of G, and an augmentation φ for S, such that:

- $\text{nav}(S,\varphi,\text{dists}) = O(\text{polylog } n)$
- $\text{nav}(G,\varphi,\text{dists}) = \Omega(n)$
PROOF OF THEOREM: TREE-COVER

- **Definition** A (σ, δ)-tree-cover of G is a collection C of trees such that:
 - $\forall T \in C$, T is a subgraph of G
 - $\forall x \in V(G)$, $\exists T \in C / x \in V(T)$
 - $\forall x, y \in V(G)$, $\exists T \in C / \text{dist}_T(x, y) \leq \sigma \cdot \text{dist}_G(x, y)$
 - $\forall x \in V(G)$, $|\{T \in C / x \in V(T)\}| \leq \delta$
Theorem [Thorup, Zwick, J. ACM 2005] Any graph has a \((2k-1, O(k n^{1/k}))\)-tree-cover, for all \(k \geq 1\).

Lemma If \(G\) has a \((\sigma, \delta)\)-tree-cover with \(\delta \leq n\), then there exist an augmenting distribution \(\varphi\), and a semimetric \(\mu\) with stretch \(\sigma\), such that \(\text{nav}(G, \varphi, \mu) \leq O(\delta^2 \log^2 n)\).

The semimetric \(\mu\) can be encoded at every node using \(O(\delta \log n \log(\sigma\Delta))\) bits.
THE SEMIMETRIC

- \(C_{u,v} \subset C \) is the set of trees containing \(u \) and \(v \).

- Setting: \(\mu(u,v) = \min_{T \in C_{u,v}} \text{dist}_T(u,v) \)

- Remark:
 - \(\mu \) has stretch \(\sigma \)
 - \(\mu \) does not satisfy the triangle inequality (it is a semimetric)
CENTROIDAL DECOMPOSITION
AUGMENTATION

1) Select a tree u.a.r. prob. $\geq \frac{1}{\delta}$
2) Select a centroid u.a.r. prob. $\geq \frac{1}{\log n}$
GREEDY ROUTING ANALYSIS

- Route from source s to target t: u_0, u_1, \ldots, u_r
- $c_{j,k}$ denotes the centroid for t, of level k in tree j containing t.
- $\Phi(u) = \#\text{centroids } c_{j,k} \text{ closer to target than } u$
- $\Phi_{j,k}(u) = 1$ if $\mu(u, t) > \mu(c_{j,k}, t)$, and 0 otherwise

$$\Phi(u) = \sum_{j,k} \Phi_{j,k}(u)$$
ANALYSIS (2)

\[\Phi(s) \leq \delta \log(n) \text{ and } \Phi(t) = 0 \]

\[Z_i = \text{#steps to reduce } \Phi \text{ by at least 1 from } \Phi=i \text{ to } \Phi \leq i-1 \]

\[\text{nav}(G, \varphi, \mu) \leq \sum_i E(Z_i) \]

Note: there are at most \(\delta \log(n) \) terms in the sum

Claim: \(E(Z_i) \leq \delta \log(n) \)
- $d_{j,k}$ denotes the centroid for current node u, of level k in tree j containing u.

- Let j such that $\mu(u,t) = \text{dist}_{T_j}(u,t)$

Let k be largest index such that $c_{j,k} = d_{j,k}$
If $u = c_{j,k} = d_{j,k}$ then Φ decreased by 1

Assume $u \neq c_{j,k} = d_{j,k}$

- $\mu(u,t) = \text{dist}_{T_j}(u,t)$
- $\text{dist}_{T_j}(u,t) = \text{dist}_{T_j}(u,d_{j,k}) + \text{dist}_{T_j}(d_{j,k},t)$
- $\mu(d_{j,k},t) \leq \text{dist}_{T_j}(d_{j,k},t) < \text{dist}_{T_j}(u,t)$

Thus if the long-range contact of u is $c_{j,k} = d_{j,k}$ then Φ decreases by 1

This event occurs with probability $\geq 1/(\delta \log(n))$
Theorem [Gavoille, Peleg, Perennes, Raz, 2004] There exists a distance labeling scheme \((\lambda, \alpha)\) for trees with

- Labels \(\lambda(T,u)\) of size \(O(\log(n) \log(\Delta))\) bits
- Decoding \(\alpha\) of size \(O(1)\) and time \(O(1)\)

Labeling:

\[L(G,u) = \left((\beta_1, \lambda(T_{\beta_1},u)), (\beta_2, \lambda(T_{\beta_2},u)), \ldots, (\beta_\delta, \lambda(T_{\beta_\delta},u)) \right) \]
OPEN PROBLEMS

• Is it possible to design an augmenting distribution ϕ, and a semimetric μ with constant stretch, such that $\text{nav}(G, \phi, \mu) \leq O(\text{polylog } n)$?

• Is it possible to design an augmenting distribution ϕ, and a metric μ with polylog stretch, such that $\text{nav}(G, \phi, \mu) \leq O(\text{polylog } n)$ and μ can be encoded at every node using $O(\text{polylog } n)$ bits?
THANK YOU!