Periodic Graph Exploration Using an Oblivious Agent

Jurek Czyzowicz1 \hfill Leszek Gasieniec2
David Ilcinkas3 \hfill Ralf Klasing3

1Université du Québec en Outaouais, Canada
2University of Liverpool, United Kingdom
3CNRS and University of Bordeaux (LaBRI), France

DYNAMO meeting
September 26, 2008
Problem

Periodic graph exploration

A mobile entity, called agent, has to visit every node of an unknown anonymous graph infinitely often.

Efficiency measure

Period: length of the tour, i.e., maximal number of edge traversals between two visits of the same node

Motivation: Network maintenance by a software agent
Problem

Periodic graph exploration

A mobile entity, called *agent*, has to visit every node of an unknown anonymous graph infinitely often.

Efficiency measure

Period: length of the tour, i.e., maximal number of edge traversals between two visits of the same node

Motivation: Network maintenance by a software agent
Problem

Periodic graph exploration

A mobile entity, called agent, has to visit every node of an unknown anonymous graph infinitely often.

Efficiency measure

Period: length of the tour, i.e., maximal number of edge traversals between two visits of the same node

Motivation: Network maintenance by a software agent
Unknown, anonymous graphs

Unknown
- Unknown topology
- Unknown size

Anonymous
- No node labeling
- Local port numbering at node v from 1 to $\text{deg}(v)$
Unknown, anonymous graphs

Unknown
- Unknown topology
- Unknown size

Anonymous
- No node labeling
- Local port numbering at node \(v \) from 1 to \(\text{deg}(v) \)
Unknown, anonymous graphs

<table>
<thead>
<tr>
<th>Unknown</th>
<th>Anonymous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown topology</td>
<td>No node labeling</td>
</tr>
<tr>
<td>Unknown size</td>
<td>Local port numbering at node (v) from 1 to (\deg(v))</td>
</tr>
</tbody>
</table>

J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing

Periodic Graph Exploration Using an Oblivious Agent
Unknown, anonymous graphs

Unknown
- Unknown topology
- Unknown size

Anonymous
- No node labeling
- Local port numbering at node v from 1 to $\text{deg}(v)$
Objective

Use agents with a memory of constant size

Justifications

- Simple and cost effective agents
- Facilitates design and analysis of algorithms

Model

The agent is modeled as a finite Mealy automaton.
Objective

Use agents with a memory of constant size

Justifications

- Simple and cost effective agents
- Facilitates design and analysis of algorithms

Model

The agent is modeled as a finite Mealy automaton.
Memory constraint

Objective
Use agents with a memory of constant size

Justifications
- Simple and cost effective agents
- Facilitates design and analysis of algorithms

Model
The agent is modeled as a finite Mealy automaton.
Mealy automaton

Input
- S: current state
- i: input port number
- d: node’s degree

Output
- S': new state
- j: output port number

Transition function
- $f: (S, i, d) \mapsto (S', j)$

Oblivious agent (one single state)
- Transition functions $f_d: i \rightarrow j$ for $d \geq 1
Mealy automaton

Input
- S: current state
- i: input port number
- d: node's degree

Output
- S': new state
- j: output port number

Transition function
- $f : (S, i, d) \mapsto (S', j)$

Oblivious agent (one single state)
- Transition functions $f_d : i \to j$ for $d \geq 1$
Motivations (cont’d)

USTCON (undirected st-connectivity)

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

- $L =$ class of problems solvable by deterministic log-space computations
- $SL \supseteq L =$ class of problems solvable by symmetric non-deterministic log-space computations
Motivations (cont’d)

USTCON (undirected st-connectivity)

1. \(G = \{V, E\} \) an undirected graph
2. \(s, t \in V \) two vertices of \(G \)

Are \(s \) and \(t \) in the same connected component of \(G \)?

- \(L = \) class of problems solvable by deterministic log-space computations
- \(SL \ (\supseteq L) = \) class of problems solvable by symmetric non-deterministic log-space computations
USTCON (undirected st-connectivity) SL-complete

- \(G = \{V, E\} \) an undirected graph
- \(s, t \in V \) two vertices of \(G \)

Are \(s \) and \(t \) in the same connected component of \(G \)?

- \(L = \) class of problems solvable by deterministic log-space computations
- \(SL (\supseteq L) = \) class of problems solvable by symmetric non-deterministic log-space computations
Motivations (cont’d)

USTCON (undirected st-connectivity) SL-complete

- \(G = \{V, E\} \) an undirected graph
- \(s, t \in V \) two vertices of \(G \)

Are \(s \) and \(t \) in the same connected component of \(G \)?

- \(L = \) class of problems solvable by deterministic log-space computations
- \(SL (\supseteq L) = \) class of problems solvable by symmetric non-deterministic log-space computations

Reingold, STOC 2005
Undirected ST-Connectivity in Log-Space

USTCON \(\in L \Rightarrow SL=L \)
Impossibility results

Rollik, Acta Informatica, 1980

An agent able to explore the n-node graphs needs $\Omega(\log n)$ memory bits.

A pebble is a node-marker that can be dropped at and removed from nodes.

Fraigniaud et al., Essays in Memory of Shimon Even, 2006

Even with a pebble, the agent still needs $\Omega(\log n)$ memory bits.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

Cook, Rackoff, SIAMJC, 1980

No JAG can explore all graphs.

J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing
Impossibility results

Rollik, Acta Informatica, 1980

An agent able to explore the n-node graphs needs $\Omega(\log n)$ memory bits.

A pebble is a node-marker that can be dropped at and removed from nodes.

Even with a pebble, the agent still needs $\Omega(\log n)$ memory bits.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

No JAG can explore all graphs.

J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing

Periodic Graph Exploration Using an Oblivious Agent
Impossibility results

Rollik, Acta Informatica, 1980
An agent able to explore the n-node graphs needs $\Omega(\log n)$ memory bits.

A **pebble** is a node-marker that can be dropped at and removed from nodes.

Fraigniaud et al., Essays in Memory of Shimon Even, 2006
Even with a pebble, the agent still needs $\Omega(\log n)$ memory bits.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

Cook, Rackoff, SIAMJC, 1980
No JAG can explore all graphs.

J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing

Periodic Graph Exploration Using an Oblivious Agent
Impossibility results

Rollik, Acta Informatica, 1980

An agent able to explore the n-node graphs needs $\Omega(\log n)$ memory bits.

A **pebble** is a node-marker that can be dropped at and removed from nodes.

Fraigniaud et al., Essays in Memory of Shimon Even, 2006

Even with a pebble, the agent still needs $\Omega(\log n)$ memory bits.

A **JAG (Jumping Automaton for Graphs)** is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

Cook, Rackoff, SIAMJC, 1980

No JAG can explore all graphs.
Impossibility results

Rollik, Acta Informatica, 1980

An agent able to explore the \(n \)-node graphs needs \(\Omega(\log n) \) memory bits.

A pebble is a node-marker that can be dropped at and removed from nodes.

Fraigniaud et al., Essays in Memory of Shimon Even, 2006

Even with a pebble, the agent still needs \(\Omega(\log n) \) memory bits.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

Cook, Rackoff, SIAMJC, 1980

No JAG can explore all graphs.
Giving advice

Providing additional information does help.

Model

- An oracle puts bits of advice at the graph nodes to help the agent.
- The agent can read these bits as an input of its transition function.

- 1 bit of advice per node:
 Constant memory suffices for constant-degree graphs.
- 2 bits of advice per node:
 Constant memory suffices for arbitrary graphs.

In both cases, period = $O(m)$
Giving advice

Providing additional information does help.

Model

- An oracle puts bits of advice at the graph nodes to help the agent.
- The agent can read these bits as an input of its transition function.

- 1 bit of advice per node:
 Constant memory suffices for constant-degree graphs.
- 2 bits of advice per node:
 Constant memory suffices for arbitrary graphs.

In both cases, period = $O(m)$
Observation

All impossibility results are based on a misleading assignment of the port numbers.

A solution

Port numbers are set to help the automaton.

Dobrev, Jansson, Sadakane, Sung, SIROCCO, 2005

There exist an algorithm for setting the port numbers, and an oblivious agent using them, such that the agent explores all graphs of size n within the period $10n$.

J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing

Periodic Graph Exploration Using an Oblivious Agent
Observation
All impossibility results are based on a misleading assignment of the port numbers.

A solution
Port numbers are set to help the automaton.

Debroy, Dobrev, Sadakane, Sung, SIROCCO, 2005
There exist an algorithm for setting the port numbers, and an oblivious agent using them, such that the agent explores all graphs of size n within the period $10n$.

J. Czyzowicz, L. Gasieniec, D. Ilcinkas and R. Klasing
Periodic Graph Exploration Using an Oblivious Agent
Setting port numbers

Observation
All impossibility results are based on a misleading assignment of the port numbers.

A solution
Port numbers are set to help the automaton.

Dobrev, Jansson, Sadakane, Sung, SIROCCO, 2005
There exist an algorithm for setting the port numbers, and an oblivious agent using them, such that the agent explores all graphs of size n within the period $10n$.
Better upper bounds are known for constant-memory agents.

- Ilcinkas, TCS, 2008
 Length of the tour $\leq 4n$

- Gasieniec, Klasing, Martin, Navarra, Zhang, JCSS, 2007
 Length of the tour $\leq 3.75n$

- Czyzowicz et al., under submission
 Length of the tour $\leq 3.5n$
The non-oblivious case

Better upper bounds are known for constant-memory agents.

Ilcinkas, TCS, 2008
Length of the tour $\leq 4n$

Gasieniec, Klasing, Martin, Navarra, Zhang, JCSS, 2007
Length of the tour $\leq 3.75n$

Czyzowicz et al., under submission
Length of the tour $\leq 3.5n$
The non-oblivious case

Better upper bounds are known for constant-memory agents.

Ilcinkas, TCS, 2008
Length of the tour $\leq 4n$

Gasieniec, Klasing, Martin, Navarra, Zhang, JCSS, 2007
Length of the tour $\leq 3.75n$

Czyzowicz et al., under submission
Length of the tour $\leq 3.5n$
The non-oblivious case

Better upper bounds are known for constant-memory agents.

Ilcinkas, TCS, 2008
Length of the tour $\leq 4n$

Gasieniec, Klasing, Martin, Navarra, Zhang, JCSS, 2007
Length of the tour $\leq 3.75n$

Czyzowicz et al., under submission
Length of the tour $\leq 3.5n$
Our results

Question

What is the minimum α such that there exist an algorithm for setting the port numbers, and an oblivious agent using it, such that the automaton explores all graphs of size n within the period $\alpha \cdot n$?

Main result

$2.8 \leq \alpha \leq 4.333 \ldots$

Complementary result

If there exists a spanning tree T of $G = (V, E)$ such that none of the nodes is saturated (i.e. $\forall v \in V \; \deg_T(v) \neq \deg_G(v)$), then period $2n$ can be achieved by an oblivious agent.
Question

What is the minimum α such that there exist an algorithm for setting the port numbers, and an oblivious agent using it, such that the automaton explores all graphs of size n within the period $\alpha \cdot n$?

Main result

$2.8 \leq \alpha \leq 4.333 \ldots$

Complementary result

If there exists a spanning tree T of $G = (V, E)$ such that none of the nodes is saturated (i.e. $\forall v \in V \ (\deg_T(v) \neq \deg_G(v))$), then period $2n$ can be achieved by an oblivious agent.
Our results

Question

What is the minimum α such that there exist an algorithm for setting the port numbers, and an oblivious agent using it, such that the automaton explores all graphs of size n within the period $\alpha \cdot n$?

Main result

$2.8 \leq \alpha \leq 4.333 \ldots$

Complementary result

If there exists a spanning tree T of $G = (V, E)$ such that none of the nodes is saturated (i.e. $\forall v \in V \ deg_T(v) \neq deg_G(v)$), then period $2n$ can be achieved by an oblivious agent.
A useful observation

Property

The algorithm of any oblivious agent able to explore all graphs is “equivalent” to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d : i \rightarrow i + 1$ for $d \geq 1$

Proof

For any degree d, the transition function f_d has to be a cyclic permutation, which is “equivalent” to the Right-Hand rule.
A useful observation

Property

The algorithm of any oblivious agent able to explore all graphs is "equivalent" to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d : i \rightarrow i + 1$ for $d \geq 1$

Proof

For any degree d, the transition function f_d has to be a cyclic permutation, which is "equivalent" to the Right-Hand rule.
A useful observation

Property

The algorithm of any oblivious agent able to explore all graphs is “equivalent” to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is \(f_d : i \rightarrow i + 1 \) for \(d \geq 1 \)

Proof

For any degree \(d \), the transition function \(f_d \) has to be a cyclic permutation, which is “equivalent” to the Right-Hand rule.
A useful observation

Property

The algorithm of any oblivious agent able to explore all graphs is “equivalent” to the **Right-Hand-on-the-Wall** rule.

Proof

For any degree \(d \), the transition function \(f_d \) has to be a **cyclic permutation**, which is “equivalent” to the **Right-Hand** rule.
A useful observation

Property

The algorithm of any oblivious agent able to explore all graphs is “equivalent” to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is \(f_d : i \rightarrow i + 1 \) for \(d \geq 1 \)

Proof

For any degree \(d \), the transition function \(f_d \) has to be a cyclic permutation, which is “equivalent” to the Right-Hand rule.
A useful observation

Property
The algorithm of any oblivious agent able to explore all graphs is “equivalent” to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is \(f_d : i \rightarrow i + 1 \) for \(d \geq 1 \)

Proof
For any degree \(d \), the transition function \(f_d \) has to be a cyclic permutation, which is “equivalent” to the Right-Hand rule.
A useful observation

Property

The algorithm of any oblivious agent able to explore all graphs is “equivalent” to the Right-Hand-on-the-Wall rule.

Right-Hand-on-the-Wall rule is $f_d : i \rightarrow i + 1$ for $d \geq 1$

Proof

For any degree d, the transition function f_d has to be a cyclic permutation, which is “equivalent” to the Right-Hand rule.
Lower bound: \(\alpha \geq 2.4 \)
Lower bound: $\alpha \geq 2.4$
Lower bound: $\alpha \geq 2.4$
Lower bound: \(\alpha \geq 2.4 \)
Lower bound: $\alpha \geq 2.4$
Lower bound: $\alpha \geq 2.4$
Lower bound

Lower bound: $\alpha \geq 2.4$

Lower bound: $\alpha \geq 2.8$
Specific directed spanner

Construction of a spanning directed subgraph H of the symmetric directed version of G such that

- for every node, $\#$ incoming arcs = $\#$ outgoing arcs
- for every node, either it is saturated or an arc incident to it belongs to H but not its symmetric arc
- there exists a spanning tree composed of pairs of symmetric arcs

Property

From H, one can construct a tour spanning G.

Performance

Length of the tour \leq number of arcs in H.
General technique

Specific directed spanner

Construction of a spanning directed subgraph H of the symmetric directed version of G such that

- for every node, $\#$ incoming arcs $= \#$ outgoing arcs
- for every node, either it is saturated or an arc incident to it belongs to H but not its symmetric arc
- there exists a spanning tree composed of pairs of symmetric arcs

Property

From H, one can construct a tour spanning G.

Performance

Length of the tour \leq number of arcs in H
General technique

Specific directed spanner

Construction of a spanning directed subgraph H of the symmetric directed version of G such that:

- For every node, the number of incoming arcs equals the number of outgoing arcs.
- For every node, either it is saturated or an arc incident to it belongs to H but not its symmetric arc.
- There exists a spanning tree composed of pairs of symmetric arcs.

Property

From H, one can construct a tour spanning G.

Performance

Length of the tour \leq number of arcs in H.
A three-layer partition of a graph $G = (V, E)$ is a 4-uplet (X, Y, Z, T) such that

- the three sets X, Y and Z form a partition of V
- $Y = N_G(X)$ and $Z = N_G(Y) \setminus X$
- T is a tree of node-set $X \cup Y$ where all nodes in X are saturated

top layer X

middle layer Y

bottom layer Z
How to construct it

all nodes belong to R here

(a)

(b)

(c)

(d)

(e)
Conclusion and perspectives

Open problem

Exact value for minimum α

Variant

Best tour for a given graph (NP-hard problem)
Conclusion and perspectives

Open problem

Exact value for minimum α

Variant

Best tour for a given graph (NP-hard problem)
Thank You for your attention